Advertisements
Advertisements
प्रश्न
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
उत्तर
Let I = `int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
= `int sqrt(("e"^(2x)("e"^x - 1))/("e"^x + 1)) "d"x`
= `int"e"^x sqrt(("e"^x - 1)/("e"^x + 1)) "d"x`
Put ex = t
∴ ex dx = dt
∴ I = `int sqrt(("t" - 1)/("t" + 1)) "dt"`
= `int sqrt(("t" - 1)/("t" + 1) xx ("t" - 1)/("t" - 1)) "dt"`
= `int ("t" - 1)/sqrt("t"^2 - 1) "dt"`
= `int ("t"/sqrt("t"^2 - 1) - 1/sqrt("t"^2 - 1)) "dt"`
= `int "t"/sqrt("t"^2 - 1) "dt" - int 1/sqrt("t"^2 - 1) "dt"`
= I1 − I2 .......(i)
I1 = `int "t"/sqrt("t"^2 - 1) "dt"`
Put t2 − 1 = a
∴ 2t dt = da
∴ I1 = `1/2 int "da"/sqrt("a")`
= `1/2 int "a"^(1/2) "da"`
= `1/2("a"^(1/2)/(1/2)) + "c"_1`
= `sqrt("a") + "c"_1`
= `sqrt("t"^2 - 1) + "c"_1`
∴ I1 = `sqrt("e"^(2x) - 1) + "c"_1` ......(ii)
I2 = `int 1/sqrt("t"^2 - 1^2) "dt"`
= `log|"t" + sqrt("t"^2 - 1^2)| + "c"_2`
∴ I2 = `log|"e"^x + sqrt("e"^(2x) - 1)| + "c"_2` .......(iiii)
From (i), (ii) and (iii), we get
I = `sqrt("e"^(2x) - 1) - log|"e"^x + sqrt("e"^(2x) - 1)| +"c"`,
where c = c1 − c2
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate `int 1/("x" ("x" - 1))` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int sqrt(1 + sin2x) "d"x`
`int x/(x + 2) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int x^3"e"^(x^2) "d"x`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`