हिंदी

∫e3x-e2xex+1 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`

योग

उत्तर

Let I = `int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`

= `int sqrt(("e"^(2x)("e"^x - 1))/("e"^x + 1))  "d"x`

= `int"e"^x sqrt(("e"^x - 1)/("e"^x + 1))  "d"x`

Put ex = t

∴ ex dx = dt

∴ I = `int sqrt(("t" - 1)/("t" + 1))  "dt"`

= `int sqrt(("t" - 1)/("t" + 1) xx ("t" - 1)/("t" - 1))  "dt"`

= `int ("t" - 1)/sqrt("t"^2 - 1)  "dt"`

= `int ("t"/sqrt("t"^2 - 1) - 1/sqrt("t"^2 - 1))  "dt"`

= `int "t"/sqrt("t"^2 - 1)  "dt" - int  1/sqrt("t"^2 - 1)  "dt"`

= I1 − I2      .......(i)

I1 = `int "t"/sqrt("t"^2 - 1)  "dt"`

Put t2 − 1 = a

∴ 2t dt = da

I1 = `1/2 int "da"/sqrt("a")`

= `1/2 int "a"^(1/2) "da"`

= `1/2("a"^(1/2)/(1/2)) + "c"_1`

= `sqrt("a") + "c"_1`

= `sqrt("t"^2 - 1) + "c"_1`

I1 = `sqrt("e"^(2x) - 1) + "c"_1`    ......(ii)

I2 = `int 1/sqrt("t"^2 - 1^2)  "dt"`

= `log|"t" + sqrt("t"^2 - 1^2)| + "c"_2`

I2 = `log|"e"^x + sqrt("e"^(2x) - 1)| + "c"_2`  .......(iiii)

 From (i), (ii) and (iii), we get

I = `sqrt("e"^(2x) - 1) - log|"e"^x + sqrt("e"^(2x) - 1)| +"c"`,

 where c = c1 − c2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Long Answers III

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


`int (dx)/(sin^2 x cos^2 x)` equals:


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


\[\int x \sin^3 x\ dx\]

`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate `int 1/("x" ("x" - 1))` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int sqrt(1 + sin2x)  "d"x`


`int x/(x + 2)  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int x^3"e"^(x^2) "d"x`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate:

`int sin^2(x/2)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×