Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
उत्तर
Let I = `int ((x - 1)^2)/(x^2 + 1)^2.dx`
= `int (x^2 - 2x + 1)/(x^2 + 1)^2.dx`
= `int ((x^2 + 1) - 2x)/(x^2 + 1)^2.dx`
= `int [(x^2 + 1)/(x^2 + 1)^2 - (2x)/(x^2 + 1)^2].dx`
= `int (1)/(x^2 + 1)dx - int (2x)/(x^2 + 1)^2.dx`
= I1 – I2 ...(Let)
In I2, Put x2 + 1 = t
∴ 2x dx = dt
= I = `int (1)/(x^2 + 1).dx - int t^-2 dt`
= `tan^-1 x - t^-1/((-1)) + c`
= `tan^-1 x + (1)/(x^2 + 1) + c`.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int 1/("x" ("x" - 1))` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int 1/(cos x - sin x)` dx = _______________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int x/(x + 2) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`