Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
उत्तर
Let I = `int (1)/(5 - 4x - 3x^2).dx`
5 – 4x –3x2 = `[5/3 - (x^2 + 4/3 x)]`
= `3[(5)/(3) - (x^2 + (4)/(3)x + (4)/(9)) + 4/9]`
= `3[(19)/(9) - (x^2 + (4x)/(3) + (4)/(9))]`
= `3[(sqrt(19)/3)^2 - (x + 2/3)^2]`
I = `int (1)/(3[(sqrt(19)/3)^2 - (x + 2/3)^2]).dx`
= `(1)/(3) (1)/(2(sqrt(19)/3))log |(sqrt(19)/(3) + (x + 2/3))/(sqrt(19)/(3) - (x + 2/3))| + c`
= `(1)/(2sqrt(19))log |(sqrt(19) + 2 + 3x)/(sqrt(19) - 2 - 3x)| + c`
= `(1)/(2sqrt(19))log |(3x + 2 + sqrt(19))/(-(3x + 2 - sqrt(19)))| + c`
= `(1)/(2sqrt(19))log |(3x + 2 + sqrt(19))/(3x + 2 - sqrt(19))| + c`. ...[∵ | – x |= x]
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate: ∫ |x| dx if x < 0
`int cos sqrtx` dx = _____________
`int 1/(xsin^2(logx)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int dx/(1 + e^-x)` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate:
`intsqrt(sec x/2 - 1)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`