हिंदी

Evaluate the following : ∫15-4x-3x2.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`

योग

उत्तर

Let I = `int (1)/(5 - 4x - 3x^2).dx`

5 – 4x –3x2 = `[5/3 - (x^2 + 4/3 x)]`

= `3[(5)/(3) - (x^2 + (4)/(3)x + (4)/(9)) + 4/9]`

= `3[(19)/(9) - (x^2 + (4x)/(3) + (4)/(9))]`

= `3[(sqrt(19)/3)^2 - (x + 2/3)^2]`

I = `int (1)/(3[(sqrt(19)/3)^2 - (x + 2/3)^2]).dx`

= `(1)/(3) (1)/(2(sqrt(19)/3))log |(sqrt(19)/(3) + (x + 2/3))/(sqrt(19)/(3) - (x + 2/3))| + c`

= `(1)/(2sqrt(19))log |(sqrt(19) + 2 + 3x)/(sqrt(19) - 2 - 3x)| + c`

= `(1)/(2sqrt(19))log |(3x + 2 + sqrt(19))/(-(3x + 2 - sqrt(19)))| + c`

= `(1)/(2sqrt(19))log |(3x + 2 + sqrt(19))/(3x + 2 - sqrt(19))| + c`.      ...[∵ | – x |= x]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.13 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Evaluate: ∫ |x| dx if x < 0


`int cos sqrtx` dx = _____________


`int 1/(xsin^2(logx))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int dx/(1 + e^-x)` = ______


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×