Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
Let I=\[\int\] ex (sin x + cos x) dx
⇒ (ex . sin x + ex cos x) dx = dt
\[\therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \sin x + C \left( \because t = e^x \sin x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`1/(1 + cot x)`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int sqrt(1 + "x"^2) "dx"` =
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int (cos2x)/(sin^2x) "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int(5x + 2)/(3x - 4) dx` = ______
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).