Advertisements
Advertisements
प्रश्न
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
उत्तर
\[\left( e^{\text{ x log}_e a} + e^{\text{ a }\log_e x} \right)dx\]
\[\int\left( e^{ \text{ log a}^x} + e^{ \text{ log x}^a} \right) dx\]
\[ = \int \left( a^x + x^a \right)dx\]
\[ = \frac{a^x}{\log a} + \frac{x^{a + 1}}{a + 1} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int 1/(x(x-1)) dx`
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int (logx)^2/x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
`int x^3 e^(x^2) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`