Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \sqrt{9 - x^2} \text{ dx}\]
\[ = \int \sqrt{3^2 - x^2} \text{ dx}\]
\[ = \frac{x}{2}\sqrt{3^2 - x^2} + \frac{3^2}{2} \sin^{- 1} \left( \frac{x}{3} \right) + C \left[ \because \int\sqrt{a^2 - x^2} \text{ dx } = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \text{ sin}^{- 1} \left( \frac{x}{a} \right) + C \right]\]
\[ = \frac{x}{2}\sqrt{9 - x^2} + \frac{9}{2} \sin^{- 1} \left( \frac{x}{3} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :`intxlogxdx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Write a value of
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int 1/(cos x - sin x)` dx = _______________
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int1/(4 + 3cos^2x)dx` = ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`