Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
उत्तर
\[\text{ Let I }= \int \frac{\sin x}{\cos^3 x}dx\]
\[\text{ Let cos x }= t\]
\[ \Rightarrow - \text{ sin x dx} = dt\]
\[ \Rightarrow \text{ sin x dx }= - dt\]
\[ \therefore I = - \int \frac{dt}{t^3}\]
\[ = - \int t^{- 3} dt\]
\[ = - \left[ \frac{t^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \frac{1}{2 t^2} + C\]
\[ = \frac{1}{2 \cos^2 x} + C \left( \because t = \cos x \right)\]
\[ = \frac{1}{2} \text{ sec}^2 x + C\]
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int cos sqrtx` dx = _____________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int x^x (1 + logx) "d"x`
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`