हिंदी

∫(2+cotx-cosec2x)ex dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`

योग

उत्तर

`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`

= `int "e"^x [(2 + cot x) - "cosec"^2x] "d"x`

= `"e"^x (2 + cot x) + "c"`      .......`[∵ int"e"^x ["f"(x) + "f'"(x)]  "d"x = "e"^x*"f"(x) + "c"]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Very Short Answers

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate `int 1/("x" ("x" - 1))` dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int (log x)/(log ex)^2` dx = _________


`int sqrt(1 + sin2x)  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int x^x (1 + logx)  "d"x`


`int(log(logx))/x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int (7x + 9)^13  "d"x` ______ + c


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int (cos x)/(1 - sin x) "dx" =` ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int (logx)^2/x dx` = ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×