Advertisements
Advertisements
प्रश्न
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
उत्तर
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
= `int "e"^x [(2 + cot x) - "cosec"^2x] "d"x`
= `"e"^x (2 + cot x) + "c"` .......`[∵ int"e"^x ["f"(x) + "f'"(x)] "d"x = "e"^x*"f"(x) + "c"]`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate `int 1/("x" ("x" - 1))` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int (log x)/(log ex)^2` dx = _________
`int sqrt(1 + sin2x) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x^x (1 + logx) "d"x`
`int(log(logx))/x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int (7x + 9)^13 "d"x` ______ + c
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int (cos x)/(1 - sin x) "dx" =` ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int (logx)^2/x dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).