Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \sqrt{4 x^2 - 5}\text{ dx}\]
\[ = \int \sqrt{4\left( x^2 - \frac{5}{4} \right)} \text{ dx}\]
\[ = 2\int \sqrt{x^2 - \left( \frac{\sqrt{5}}{2} \right)^2} \text{ dx}\]
\[ = 2\left[ \frac{x}{2}\sqrt{x^2 - \frac{5}{4}} - \frac{5}{8}\text{ ln }\left| x + \sqrt{x^2 - \frac{5}{4}} \right| \right] + C \left[ \because \int\sqrt{x^2 - a^2} \text{ dx}= \frac{1}{2}x\sqrt{x^2 - a^2} - \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = x \sqrt{x^2 - \frac{5}{4}} - \frac{5}{4}\text{ ln }\left| x + \sqrt{x^2 - \frac{5}{4}} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int (7x + 9)^13 "d"x` ______ + c
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
If f'(x) = `x + 1/x`, then f(x) is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`