हिंदी

∫ √ 4 X 2 − 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]
योग

उत्तर

\[\int \sqrt{4 x^2 - 5}\text{ dx}\]
\[ = \int \sqrt{4\left( x^2 - \frac{5}{4} \right)} \text{ dx}\]
\[ = 2\int \sqrt{x^2 - \left( \frac{\sqrt{5}}{2} \right)^2} \text{ dx}\]
\[ = 2\left[ \frac{x}{2}\sqrt{x^2 - \frac{5}{4}} - \frac{5}{8}\text{ ln }\left| x + \sqrt{x^2 - \frac{5}{4}} \right| \right] + C \left[ \because \int\sqrt{x^2 - a^2} \text{ dx}= \frac{1}{2}x\sqrt{x^2 - a^2} - \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = x \sqrt{x^2 - \frac{5}{4}} - \frac{5}{4}\text{ ln }\left| x + \sqrt{x^2 - \frac{5}{4}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.28 [पृष्ठ १५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.28 | Q 9 | पृष्ठ १५४

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{1}{x + x \log x} dx\] is


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int (7x + 9)^13  "d"x` ______ + c


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


If f'(x) = `x + 1/x`, then f(x) is ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×