Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
उत्तर
Let I = `int (1)/(2 + cosx - sinx).dx`
Put `tan (x/2)` = t
∴ x 2 tan–1 t
∴ dx = `(2dt)/(1 + t^2) and sin x = (2t)/(1 + t^2), cosx = (1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(2 + ((1 - t^2)/(1 + t^2)) - ((2t)/(1 + t^2))).(2dt)/(1 + t^2)`
= `int (1 + t^2)/(2 + 2t^2 + 1 - t^2 - 2t).(2dt)/(1 + t^2)`
= `2 int (1)/(t^2 - 2t + 3)dt`
= `2 int (1)/((t^2 - 2t + 1) + 2)dt`
= `2 int (1)/((t - 1)^2 + (sqrt(2))^2).dt`
= `2 xx (1)/sqrt(2)tan^-1 ((t - 1)/sqrt(2)) + c`
= `sqrt(2)tan^-1[(tan(x/2) - 1)/sqrt(2)] + c`.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
`int (dx)/(sin^2 x cos^2 x)` equals:
Solve: dy/dx = cos(x + y)
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int cos^7 x "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`