हिंदी

The Value of ∫ 1 X + X Log X D X is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\frac{1}{x + x \log x} dx\] is

विकल्प

  • 1 + log x

  • x + log x

  • x log (1 + log x)

  • log (1 + log x)

MCQ

उत्तर

 log (1 + log x)

\[\text{Let }I = \int\frac{dx}{x + x \log x}\]
\[ \Rightarrow \int\frac{dx}{x \left( 1 + \log x \right)}\]
\[\text{Putting }1 + \log x = t\]
\[\Rightarrow \frac{1}{x} dx = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \ln \left| t \right| + C\]
\[ = \ln \left| 1 + \log x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 25 | पृष्ठ २०२

संबंधित प्रश्न

Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`(1+ log x)^2/x`


`int (dx)/(sin^2 x cos^2 x)` equals:


\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


`int sqrt(1 + "x"^2) "dx"` =


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int sqrt(1 + sin2x)  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int 1/(x(x-1)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×