Advertisements
Advertisements
प्रश्न
The value of \[\int\frac{1}{x + x \log x} dx\] is
विकल्प
1 + log x
x + log x
x log (1 + log x)
log (1 + log x)
उत्तर
log (1 + log x)
\[\text{Let }I = \int\frac{dx}{x + x \log x}\]
\[ \Rightarrow \int\frac{dx}{x \left( 1 + \log x \right)}\]
\[\text{Putting }1 + \log x = t\]
\[\Rightarrow \frac{1}{x} dx = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \ln \left| t \right| + C\]
\[ = \ln \left| 1 + \log x \right| + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(1+ log x)^2/x`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int sqrt(1 + sin2x) "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).