Advertisements
Advertisements
प्रश्न
`int(log(logx))/x "d"x`
उत्तर
Let I = `int(log(logx))/x "d"x`
Put log x = t
∴ `1/x "d"x` = dt
∴ I = `int log "t" "dt" = intlog"t"*1 "dt"`
= `log "t" int 1*"dt" - int ["d"/"dt"(log"t") int 1*"dt"]"dt"`
= `log "t"* "t" - int(1/"t" xx "t") "dt"`
= `"t"*log "t" - int "dt"`
= t log t − t + c
= t (log t − 1) + c
∴ I = logx [log (logx) − 1] + c
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`x/(e^(x^2))`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
`int logx/(log ex)^2*dx` = ______.
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int logx/x "d"x`
`int cot^2x "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int (logx)^2/x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`