हिंदी

If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).

योग

उत्तर

f'(x) = 4x3 − 3x2 + 2x + k  ....[Given]

f(x) = ∫ f'(x) dx

= ∫ (4x3 − 3x2 + 2x + k) dx

= 4 ∫ x3 dx − 3 ∫ x2 dx + 2 ∫ x dx + k ∫ dx

= `4 ("x"^4/4) - 3("x"^3/3) + 2("x"^2/2)  "kx" + "c"`

∴ f(x) = x4 − x3 + x2 + kx + c  ....(i)

Now, f(0) = 1  ...[Given]

∴ (0)4 − (0)3 + (0)2 + k(0) + c = 1

∴ c = 1  ....(ii)

Also, f(1) = 4  ....[Given]

∴ 1 − 1 + 1 + k + c = 4

∴ 1 + k + 1 = 4

∴ 2 + k = 4

∴ k = 2  ...(iii)

Substituting (ii) and (iii) in (i), we get

f(x) = x4 − x3 + x2 + 2x + 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.5: Integration - Q.5

संबंधित प्रश्न

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`e^(2x+3)`


Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


\[\int x \sin^3 x\ dx\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals : `int sin 4x cos 3x dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate `int(3x^2 - 5)^2  "d"x`


If f'(x) = `x + 1/x`, then f(x) is ______.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int(1 + x + x^2/(2!))dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int 1/(x(x-1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×