Advertisements
Advertisements
प्रश्न
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
उत्तर
f'(x) = 4x3 − 3x2 + 2x + k ....[Given]
f(x) = ∫ f'(x) dx
= ∫ (4x3 − 3x2 + 2x + k) dx
= 4 ∫ x3 dx − 3 ∫ x2 dx + 2 ∫ x dx + k ∫ dx
= `4 ("x"^4/4) - 3("x"^3/3) + 2("x"^2/2) "kx" + "c"`
∴ f(x) = x4 − x3 + x2 + kx + c ....(i)
Now, f(0) = 1 ...[Given]
∴ (0)4 − (0)3 + (0)2 + k(0) + c = 1
∴ c = 1 ....(ii)
Also, f(1) = 4 ....[Given]
∴ 1 − 1 + 1 + k + c = 4
∴ 1 + k + 1 = 4
∴ 2 + k = 4
∴ k = 2 ...(iii)
Substituting (ii) and (iii) in (i), we get
f(x) = x4 − x3 + x2 + 2x + 1
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`e^(2x+3)`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `int sin 4x cos 3x dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate `int(3x^2 - 5)^2 "d"x`
If f'(x) = `x + 1/x`, then f(x) is ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int 1/(x(x-1))dx`