हिंदी

Evaluate the following : ∫13x2-8.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`

योग

उत्तर

`int (1)/sqrt(3x^2 + 8).dx`

= `(1)/sqrt(3) int (1)/sqrt(x^2 + 8/3).dx`

= `(1)/sqrt(3) int (1)/sqrt(x^2 + (sqrt(8/3))^2).dx`

= `(1)/sqrt(3) log |x + sqrt(x^2 + (sqrt(8/3))^2)| + c_1`

= `(1)/sqrt(3) log |x + sqrt(x^2 + 8/3)| + c_1`

= `(1)/sqrt(3) log |(sqrt(3)x + sqrt(3x^2 + 8))/sqrt(3)| + c_1`

= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)|  - logsqrt(3) + c_1`

= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)| + c, "where"  c = c_1 - logsqrt(3)`

Alternative Method :

`int (1)/sqrt(3x^2 + 8).dx`

= `int (1)/sqrt((sqrt(3)x)^2 + (sqrt(8))^2).dx`

= `(log|sqrt(3)x + sqrt((sqrt(3)x)^2 + sqrt((8))^2| + c))/sqrt(3)`

= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.04 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`(1+ log x)^2/x`


Solve: dy/dx = cos(x + y)


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(sqrt("x") + "x")` dx


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int logx/x  "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int 1/(sinx.cos^2x)dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int x^2/sqrt(1 - x^6)dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×