Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
उत्तर
`int (1)/sqrt(3x^2 + 8).dx`
= `(1)/sqrt(3) int (1)/sqrt(x^2 + 8/3).dx`
= `(1)/sqrt(3) int (1)/sqrt(x^2 + (sqrt(8/3))^2).dx`
= `(1)/sqrt(3) log |x + sqrt(x^2 + (sqrt(8/3))^2)| + c_1`
= `(1)/sqrt(3) log |x + sqrt(x^2 + 8/3)| + c_1`
= `(1)/sqrt(3) log |(sqrt(3)x + sqrt(3x^2 + 8))/sqrt(3)| + c_1`
= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)| - logsqrt(3) + c_1`
= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)| + c, "where" c = c_1 - logsqrt(3)`
Alternative Method :
`int (1)/sqrt(3x^2 + 8).dx`
= `int (1)/sqrt((sqrt(3)x)^2 + (sqrt(8))^2).dx`
= `(log|sqrt(3)x + sqrt((sqrt(3)x)^2 + sqrt((8))^2| + c))/sqrt(3)`
= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`(1+ log x)^2/x`
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int 1/(sqrt("x") + "x")` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int logx/x "d"x`
`int1/(4 + 3cos^2x)dx` = ______
The value of `intsinx/(sinx - cosx)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int 1/(sinx.cos^2x)dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int x^2/sqrt(1 - x^6)dx` = ______.
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`