Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
उत्तर
`int sinx/(1 + sinx)dx`
= `int sinx/(1 + sinx) xx (1 - sinx)/(1 - sinx)dx`
= `int(sinx - sin^2x)/(1 - sin^2x)dx`
= `int (sinx - sin^2x)/cos^2x dx`
= `int(sinx/cos^2x - sin^2x/cos^2x)dx`
= `int(1/cosx)(sinx/cosx)dx - int tan^2x dx`
= `int sec x tan x dx - int (sec^2x - 1)dx`
= `int sec x tan x dx - int sec^2x dx + int 1 dx`
= sec x – tan x + x + c.
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
`int sqrt(1 + "x"^2) "dx"` =
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int cos sqrtx` dx = _____________
`int (cos2x)/(sin^2x) "d"x`
`int x/(x + 2) "d"x`
`int cos^7 x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int(5x + 2)/(3x - 4) dx` = ______
`int ("d"x)/(x(x^4 + 1))` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Write `int cotx dx`.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`