Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
उत्तर
Let I = `int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`= int 1/sqrt("x"^2 + 2 * 2"x" + 4 - 4 + 29)` dx
`= int 1/(sqrt(("x + 2")^2 + 25)` dx
`= int "dx"/(sqrt(("x + 2")^2 + 5^2)`
`= log |("x + 2") + sqrt(("x + 2")^2 + 5^2)|`+ c
∴ I = `= log |("x + 2") + sqrt("x"^2 + "4x" + 29)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sec2(7 – 4x)
Solve: dy/dx = cos(x + y)
Write a value of\[\int a^x e^x \text{ dx }\]
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int 1/(sinx.cos^2x)dx` = ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`