Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
उत्तर
Let I = `int "x"^5/("x"^2 + 1)`dx
`int (("x"^2)^2 * "x")/("x"^2 + 1)`dx
Put x2 + 1 = t
∴ 2x . dx = dt
∴ x . dx = `1/2 * "dt"`
Also, x2 = t - 1
∴ I = `int ("t" - 1)^2/"t" * 1/2`dt
`= 1/2 int ("t"^2 - 2"t" + 1)/"t"`dt
`= 1/2 int ("t" - 2 + 1/"t")`dt
`= 1/2 ["t"^2/2 - 2"t" + log |"t"|]` + c
`= 1/4 "t"^2 - "t" + 1/2 log |"t"| + "c"`
∴ I = `1/4 ("x"^2 + 1)^2 - ("x"^2 + 1) + 1/2 log |"x"^2 + 1|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int cos^7 x "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int secx/(secx - tanx)dx` equals ______.
`int x^2/sqrt(1 - x^6)dx` = ______.