Advertisements
Advertisements
Question
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Solution
Consider the given function
`I=int(x^2+x+1)/((x^2+1)(x+2))dx`
Let `(x^2+x+1)/((x^2+1)(x+2))=A/(x+2)+(Bx+C)/(x^2+1)`
`= (A(x^2+1)+(Bx+C)(x+2))/((x^2+1)(x+2))`
`=((A+B)x^2+(2B+C)x+(2C+A))/((x^2+1)(x+2))`
Thus equating the coefficients, we have,
A+B=1...(1)
2B+C=1...(2)
2C+A=1...(3)
Solving the above three equations, we have,
`A=3/2,B=2/5 `
`:.(x^2+x+1)/((x^2+1)(x+2))=A/(x+2)+(Bx+C)/(x^2+1)`
`=>(x^2+x+1)/((x^2+1)(x+2))=3/(5(x+2))+(2x+1)/(5(x^2+1)`
`:.I=int(x^2+x+1)/((x^2+1)(x+2))dx`
`=int[3/(5(x+2))+(2x+1)/(5(x^2+1))]dx`
`=3/5intdx/((x+2))dx+1/5int(2x+1)/((x^2+1))dx`
`=3/5log(x+2)+1/5int(2x)/((x^2+1))dx+1/5intdx/((x^2+1))`
`=3/2log(x+2)+1/5log(x^2+1)+1/5tan^(-1)x+C`
APPEARS IN
RELATED QUESTIONS
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
What is anti derivative of `e^(2x)`
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.