English

If ddxf(x)=4x3-3x4 such that f(2) = 0, then f(x) is ______. - Mathematics

Advertisements
Advertisements

Question

If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.

Options

  • `x^4 + 1/x^3 - 129/8`

  • `x^3 + 1/x^4 + 129/8`

  • `x^4 + 1/x^3 + 129/8`

  • `x^3 + 1/x^4 - 129/8`

MCQ
Fill in the Blanks

Solution

If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is `underline(x^4 + 1/x^3 - 129/8)`.

Explanation:

`d/dx f(x) = 4x^3 - 3/x^4`

= f (x) `= int (4x^3 - 3/x^4) dx`

`= 4/4 x^4 - 3/(-3).1/x^3 + C`

`= x^4 + 1/x^3` + C

But, f(2) = 0

`(2)^4 + 1/(2)^3 + C = 0`

`= 16 + 1/8 + C = 0`

⇒ C `= - 129/8`

⇒ f(x) = `x^4 + 1/x^3 - 129/8`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.1 [Page 299]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.1 | Q 22 | Page 299

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`


 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

Find an anti derivative (or integral) of the following function by the method of inspection.

sin 2x


Find an anti derivative (or integral) of the following function by the method of inspection.

e2x


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`intx^2 (1 - 1/x^2)dx`


Find the following integrals:

`int (ax^2 + bx + c) dx`


Find the following integrals:

`int(2x^2 + e^x)dx`


Find the following integrals:

`int(sqrtx - 1/sqrtx)^2 dx`


Find the following integrals:

`int (x^3 + 5x^2   -4)/x^2 dx`


Find the following integrals:

`int (x^3 - x^2 + x - 1)/(x - 1) dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


Find the following integrals:

`int(sec^2x)/(cosec^2x) dx`


The anti derivative of `(sqrtx + 1/ sqrtx)` equals:


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`sinx/(sin (x - a))`


Integrate the function:

`cos x/sqrt(4 - sin^2 x)`


Integrate the function:

`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`


Integrate the function:

`1/((x^2 + 1)(x^2 + 4))`


Integrate the function:

`e^(3log x) (x^4 + 1)^(-1)`


Integrate the function:

`(2+ sin 2x)/(1+ cos 2x) e^x`


Integrate the function:

`tan^(-1) sqrt((1-x)/(1+x))`


Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`int (dx)/sqrt(9x - 4x^2)` equal


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.


`int (dx)/sqrt(5x - 6 - x^2)` equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×