Advertisements
Advertisements
Question
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Options
`x^4 + 1/x^3 - 129/8`
`x^3 + 1/x^4 + 129/8`
`x^4 + 1/x^3 + 129/8`
`x^3 + 1/x^4 - 129/8`
Solution
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is `underline(x^4 + 1/x^3 - 129/8)`.
Explanation:
`d/dx f(x) = 4x^3 - 3/x^4`
= f (x) `= int (4x^3 - 3/x^4) dx`
`= 4/4 x^4 - 3/(-3).1/x^3 + C`
`= x^4 + 1/x^3` + C
But, f(2) = 0
`(2)^4 + 1/(2)^3 + C = 0`
`= 16 + 1/8 + C = 0`
⇒ C `= - 129/8`
⇒ f(x) = `x^4 + 1/x^3 - 129/8`
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (dx)/sqrt(9x - 4x^2)` equal
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.