Advertisements
Advertisements
Question
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Solution
Let I = `int (sqrtx - 1/sqrtx)^2 dx`
`I= int (x + 1/x - 2) dx`
`I = int x dx + int 1/x dx - 2 int 1 dx`
`I= x^2/2 + log abs x - 2x + C`
APPEARS IN
RELATED QUESTIONS
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
What is anti derivative of `e^(2x)`