Advertisements
Advertisements
Question
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Solution
Let I = `int (5x)/((x + 1)(x^2 + 9))`dx
`therefore (5x)/((x + 1)(x^2 + 9)) = A/(x + 1) + (Bx + C)/(x^2 + 9)`
`=> 5x = A(x^2 + 9) + (Bx + C)(x + 1)`
Putting x = -1 in equation (1),
- 5 = A(1 + 9)
⇒ - 5 = 10 A
`therefore A = - 5/10 = - 1/2`
From equation (1),
Comparing the coefficients of x2 and the constant term,
0 = A + B
⇒ B = - A = `1/2`
0 = 9A + C
⇒ C = - 9A = `9/2`
`therefore (5x)/((x + 1)(x^2 + 9)) = (- 1)/(2(x + 1)) + (1/2 x + 9/2)/(x^2 + 9)`
∴ `I = int(1/2)/(x + 1) dx + int (1/2 x + 9/2)/(x^2 + 9) dx`
`= -1/2 log (x + 1) + 1/4 int (2x)/(x^2 + 9) dx + 9/2 int dx/ (x^2 + 3^2) + C`
`= -1/2 log (x + 1) + 1/4 log (x^2 + 9) + 9/2 xx 1/3 tan^-1 x/3 + C`
`= -1/2 log (x + 1) + 1/4 log (x^2 + 9) + 3/2 tan^-1 x/3 + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
What is anti derivative of `e^(2x)`
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.