Advertisements
Advertisements
Question
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Solution
`int(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
`=int((sin^2x+cos^x)^2-3sin^2x.cos^2x(sin^2x+cos^2x))/(sin^2x.cos^2x)dx [Using a^3+b^3=(a+b)^3−3ab(a+b)]`
`=int(1-3sin^2x.cos^2x)/(sin^2xcos^2x)dx [Using sin^2x+cos^2x=1]`
`=int(1/(sin^2x.cos^2x)-3)dx`
`=int((sin^2x+cos^2x)/(sin^2x.cos^2x)-3)dx`
`=int(sec^2x+cosec^2x-3)dx`
`=intsec^2xdx+intcosec^2xdx-int3dx`
`=tanx-cotx-3x+C`
APPEARS IN
RELATED QUESTIONS
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
`int (dx)/(sin^2x cos^2x) dx` equals
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (xdx)/((x - 1)(x - 2))` equals
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.