English

Evaluate : ∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx - Mathematics

Advertisements
Advertisements

Question

Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`

Solution

`int(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`

`=int((sin^2x+cos^x)^2-3sin^2x.cos^2x(sin^2x+cos^2x))/(sin^2x.cos^2x)dx  [Using a^3+b^3=(a+b)^3−3ab(a+b)]`

`=int(1-3sin^2x.cos^2x)/(sin^2xcos^2x)dx [Using sin^2x+cos^2x=1]`

 `=int(1/(sin^2x.cos^2x)-3)dx`

`=int((sin^2x+cos^2x)/(sin^2x.cos^2x)-3)dx`

`=int(sec^2x+cosec^2x-3)dx`

`=intsec^2xdx+intcosec^2xdx-int3dx`

`=tanx-cotx-3x+C`

 

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).


Find an anti derivative (or integral) of the following function by the method of inspection.

e2x


Find the following integrals:

`int (4e^(3x) + 1)`


Find the following integrals:

`int (ax^2 + bx + c) dx`


Find the following integrals:

`int(2x^2 + e^x)dx`


Find the following integrals:

`int(sqrtx - 1/sqrtx)^2 dx`


Find the following integrals:

`int (x^3 + 3x + 4)/sqrtx dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.


Integrate the function:

`1/(x - x^3)`


Integrate the function:

`1/(x^2(x^4 + 1)^(3/4))`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`1/(cos (x+a) cos(x+b))`


Integrate the function:

`1/((x^2 + 1)(x^2 + 4))`


Integrate the function:

f' (ax + b) [f (ax + b)]n


Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Integrate the function:

`(2+ sin 2x)/(1+ cos 2x) e^x`


Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


`int (dx)/(sin^2x cos^2x) dx` equals


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (xdx)/((x - 1)(x - 2))` equals


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×