Advertisements
Advertisements
Question
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Solution
Let `I = sqrt((1 - sqrtx)/(1 + sqrtx))`dx
`sqrtx = cos t`
=> x = cos2 t
dx = - 2 cos t sin t dt
I = `int sqrt((1 - cos t)/(1 + cos t)) * (- 2 cos t sin t) dt`
`= - 2 int sqrt((2 sin^2 t/2)/(2 cos^2 t/2)) cos t sin t dt` ...`[because 1 + cos A = 2 cos^2 A/2, 1 - cos A = 2 sin^2 A/2]`
`= - 2 int (sin t/2)/(cot t/2) (2 sin t/2 cos t/2 t) dt .....[because sin A = 2 sin A/2 cos A/2]`
`= - 4 int sin^2 t/2 cos t dt`
`= - 4 int (1 - cos t)/2 cos t dt`
`= - 2 int (cos t - cos^2 t) dt`
`= - 2 int [cos t - (1 + cos 2t)/2] dt`
`= - 2 sin t + (t + (sin 2t)/2) + C`
`= - int (2 cos t - 1 - cos 2t) dt`
`= - [2 sint - t - (sin 2t)/2] + C`
`= - [2 sin t - t - sin t cos t] + C`
`= - [2 sqrt (1 - x) - cos ^-1 sqrt x - sqrt (1 - x) * sqrt x] + C`
`= -2 sqrt (1 - x) + cos^-1 sqrt x + sqrtx * sqrt (1 - x) + C`
APPEARS IN
RELATED QUESTIONS
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (dx)/sqrt(9x - 4x^2)` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
What is anti derivative of `e^(2x)`
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.