English

Find : ∫ ( X 2 + 1 ) ( X 2 + 4 ) ( X 2 + 3 ) ( X 2 − 5 ) D X . - Mathematics

Advertisements
Advertisements

Question

Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .

Solution

\[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\]

\[\text { Let } x^2 = t\]

\[ \therefore \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( t + 1 \right)\left( t + 4 \right)}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)}\]

\[\text { Let } \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{A}{t + 3} + \frac{B}{t - 5}\]

\[ \Rightarrow 7t + 19 = A\left( t - 5 \right) + B\left( t + 3 \right)\]

\[\text { Putting }t = 5, \text { we get } B = \frac{27}{4}\]

\[\text { Putting } t = - 3, \text { we get } A = \frac{1}{4}\]

\[ \therefore \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{1}{4\left( t + 3 \right)} + \frac{27}{4\left( t - 5 \right)}\]

\[ \Rightarrow \int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx = \int dx + \frac{1}{4}\int\frac{1}{\left( x^2 + 3 \right)}dx + \frac{27}{4}\int\frac{1}{\left( x^2 - 5 \right)}dx\]

\[ = x + \frac{1}{4 \times \sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{4} \times \frac{1}{2\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]

\[ = x + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{8\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

Find an anti derivative (or integral) of the following function by the method of inspection.

sin 2x


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`int(2x^2 + e^x)dx`


Find the following integrals:

`int (x^3 + 5x^2   -4)/x^2 dx`


Find the following integrals:

`int (x^3 - x^2 + x - 1)/(x - 1) dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


Find the following integrals:

`int(sec^2x)/(cosec^2x) dx`


Find the following integrals:

`int (2 - 3 sinx)/(cos^2 x) dx.`


Integrate the function:

`1/(x - x^3)`


Integrate the function:

`1/(sqrt(x+a) + sqrt(x+b))`


Integrate the function:

`1/(x^2(x^4 + 1)^(3/4))`


Integrate the function:

`sinx/(sin (x - a))`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`


Integrate the function:

`e^x/((1+e^x)(2+e^x))`


Integrate the function:

`1/((x^2 + 1)(x^2 + 4))`


Integrate the function:

f' (ax + b) [f (ax + b)]n


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Integrate the function:

`(x^2 + x + 1)/((x + 1)^2 (x + 2))`


Evaluate `int(x^3+5x^2 + 4x + 1)/x^2  dx`


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int sqrt(1 + x^2) dx` is equal to


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.


Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×