English

Find : ∫ X Sin − 1 X √ 1 − X 2 D X . - Mathematics

Advertisements
Advertisements

Question

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .

Solution

\[I = \int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx = \sin^{- 1} x\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \frac{d}{dx}\left( \sin^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx \right]dx\] parts)

Firstly, let us evaluate the integral \[\int\frac{x}{\sqrt{1 - x^2}}dx\] .

Put 

\[t = 1 - x^2\] and \[dt = - 2x dx\] .

So,

\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} = - \sqrt{t} = - \sqrt{1 - x^2}\]

\[\therefore I = \int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[ = \sin^{- 1} x\left( - \sqrt{1 - x^2} \right) - \int\frac{1}{\sqrt{1 - x^2}}\left( - \sqrt{1 - x^2} \right)dx\]

\[ = - \sqrt{1 - x^2} \sin^{- 1} x + \int dx\]

\[ = - \sqrt{1 - x^2} \sin^{- 1} x + x + C\]

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate: `int1/(xlogxlog(logx))dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^1 x^2e^x dx` = ______.


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×