Advertisements
Advertisements
Question
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Solution
\[I = \int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx = \sin^{- 1} x\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \frac{d}{dx}\left( \sin^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx \right]dx\] parts)
Firstly, let us evaluate the integral \[\int\frac{x}{\sqrt{1 - x^2}}dx\] .
Put
\[t = 1 - x^2\] and \[dt = - 2x dx\] .
So,
\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} = - \sqrt{t} = - \sqrt{1 - x^2}\]
\[\therefore I = \int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[ = \sin^{- 1} x\left( - \sqrt{1 - x^2} \right) - \int\frac{1}{\sqrt{1 - x^2}}\left( - \sqrt{1 - x^2} \right)dx\]
\[ = - \sqrt{1 - x^2} \sin^{- 1} x + \int dx\]
\[ = - \sqrt{1 - x^2} \sin^{- 1} x + x + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate: `int1/(xlogxlog(logx))dx`
find `∫_2^4 x/(x^2 + 1)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^1 x^2e^x dx` = ______.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.