Advertisements
Advertisements
Question
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Solution
antiderivative of `(3sqrtx+1/sqrtx).=int (3sqrtx+1/sqrtx)dx`
Now, we have:
`int (3sqrtx+1/sqrtx)dx=int3x^(1/2)dx+intx^(-1/2)dx`
`=3xx2/3x^(3/2)+2x^(1/2)+c (`
`=2x^(3/2)+2x^(1/2)+C`
`=2sqrtx(x+1)+C`
Thus, the antiderivative of ` (3sqrtx+1/sqrtx). is 2sqrtx(x+1)+C` where c is the constant of integration
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (dx)/(sin^2x cos^2x) dx` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
What is anti derivative of `e^(2x)`
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.