Advertisements
Advertisements
प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
उत्तर
antiderivative of `(3sqrtx+1/sqrtx).=int (3sqrtx+1/sqrtx)dx`
Now, we have:
`int (3sqrtx+1/sqrtx)dx=int3x^(1/2)dx+intx^(-1/2)dx`
`=3xx2/3x^(3/2)+2x^(1/2)+c (`
`=2x^(3/2)+2x^(1/2)+C`
`=2sqrtx(x+1)+C`
Thus, the antiderivative of ` (3sqrtx+1/sqrtx). is 2sqrtx(x+1)+C` where c is the constant of integration
APPEARS IN
संबंधित प्रश्न
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int tan^(-1) sqrtx dx`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.