हिंदी

Integrate the function: 1x-x3 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function:

`1/(x - x^3)`

योग

उत्तर

Let `1/(x - x^3) = 1/(x(1 + x)(1 - x))`

`≡ A/x + B/(1 + x) + C/(1 - x)`

⇒ 1 = A (1 + x) (1 – x) + Bx (1 – x) + Cx (1 + x)        …(1)

Putting x = 0 in equation (1),

1 = A(1 + 0) (1 – 0)

⇒ A = 1

Putting x = -1 in equation (1),

1 = B (-1) (1 + 1)

`=> B = - 1/2`

Putting x = 1 in equation (1),

1 = C(1)(1 + 1)

`=> C = 1/2`

`therefore 1/(x - x^3) = 1/x - 1/(2(1 + x)) + 1/(2(1 - x))`

`therefore int 1/(x - x^3) dx = int 1/x dx - 1/2 int 1/(1 + x) dx + 1/2 int 1/(1 - x) dx`

`= log |x| - 1/2 log |1 + x| - 1/2 log |1 - x| + C`

`= 1/2 log |x|^2 - 1/2 log |1 - x^2| + C`

`= 1/2 log |x^2/(1 - x^2)|` +  C

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.12 [पृष्ठ ३५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.12 | Q 1 | पृष्ठ ३५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`


 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).


Find an anti derivative (or integral) of the following function by the method of inspection.

Cos 3x


Find an anti derivative (or integral) of the following function by the method of inspection.

e2x


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`intx^2 (1 - 1/x^2)dx`


Find the following integrals:

`int (ax^2 + bx + c) dx`


Find the following integrals:

`int (x^3 + 5x^2   -4)/x^2 dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`int(2x - 3cos x + e^x) dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


Find the following integrals:

`int(sec^2x)/(cosec^2x) dx`


Find the following integrals:

`int (2 - 3 sinx)/(cos^2 x) dx.`


The anti derivative of `(sqrtx + 1/ sqrtx)` equals:


If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.


Integrate the function:

`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`


Integrate the function:

`e^(3log x) (x^4 + 1)^(-1)`


Integrate the function:

`(2+ sin 2x)/(1+ cos 2x) e^x`


Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`


Evaluate `int(x^3+5x^2 + 4x + 1)/x^2  dx`


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`sqrt((10x^9 + 10^x  log e^10)/(x^10 + 10^x)) dx` equals


`int (dx)/sqrt(9x - 4x^2)` equal


`int (xdx)/((x - 1)(x - 2))` equals


`f x^2 e^(x^3) dx` equals


`int sqrt(1 + x^2) dx` is equal to


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


`d/(dx)x^(logx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×