Advertisements
Advertisements
प्रश्न
Integrate the function:
`1/(x - x^3)`
उत्तर
Let `1/(x - x^3) = 1/(x(1 + x)(1 - x))`
`≡ A/x + B/(1 + x) + C/(1 - x)`
⇒ 1 = A (1 + x) (1 – x) + Bx (1 – x) + Cx (1 + x) …(1)
Putting x = 0 in equation (1),
1 = A(1 + 0) (1 – 0)
⇒ A = 1
Putting x = -1 in equation (1),
1 = B (-1) (1 + 1)
`=> B = - 1/2`
Putting x = 1 in equation (1),
1 = C(1)(1 + 1)
`=> C = 1/2`
`therefore 1/(x - x^3) = 1/x - 1/(2(1 + x)) + 1/(2(1 - x))`
`therefore int 1/(x - x^3) dx = int 1/x dx - 1/2 int 1/(1 + x) dx + 1/2 int 1/(1 - x) dx`
`= log |x| - 1/2 log |1 + x| - 1/2 log |1 - x| + C`
`= 1/2 log |x|^2 - 1/2 log |1 - x^2| + C`
`= 1/2 log |x^2/(1 - x^2)|` + C
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (dx)/sqrt(9x - 4x^2)` equal
`int (xdx)/((x - 1)(x - 2))` equals
`f x^2 e^(x^3) dx` equals
`int sqrt(1 + x^2) dx` is equal to
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.