हिंदी

Find :∫(x2+x+1)/((x2+1)(x+2))dx - Mathematics

Advertisements
Advertisements

प्रश्न

 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

उत्तर

 

Consider the given function

`I=int(x^2+x+1)/((x^2+1)(x+2))dx`

Let `(x^2+x+1)/((x^2+1)(x+2))=A/(x+2)+(Bx+C)/(x^2+1)`

`= (A(x^2+1)+(Bx+C)(x+2))/((x^2+1)(x+2))`

`=((A+B)x^2+(2B+C)x+(2C+A))/((x^2+1)(x+2))`

Thus equating the coefficients, we have,

A+B=1...(1)

2B+C=1...(2)

2C+A=1...(3)

Solving the above three equations, we have,

`A=3/2,B=2/5 `

`:.(x^2+x+1)/((x^2+1)(x+2))=A/(x+2)+(Bx+C)/(x^2+1)`

`=>(x^2+x+1)/((x^2+1)(x+2))=3/(5(x+2))+(2x+1)/(5(x^2+1)`

`:.I=int(x^2+x+1)/((x^2+1)(x+2))dx`

`=int[3/(5(x+2))+(2x+1)/(5(x^2+1))]dx`

`=3/5intdx/((x+2))dx+1/5int(2x+1)/((x^2+1))dx`

`=3/5log(x+2)+1/5int(2x)/((x^2+1))dx+1/5intdx/((x^2+1))`

 `=3/2log(x+2)+1/5log(x^2+1)+1/5tan^(-1)x+C`

 

 

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 N

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).


Find an anti derivative (or integral) of the following function by the method of inspection.

Cos 3x


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`int (4e^(3x) + 1)`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.


Integrate the function:

`1/(x^2(x^4 + 1)^(3/4))`


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`sinx/(sin (x - a))`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`


Integrate the function:

`x^3/(sqrt(1-x^8)`


Integrate the function:

`e^x/((1+e^x)(2+e^x))`


Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`


Evaluate `int tan^(-1) sqrtx dx`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


Evaluate: `int  (1 - cos x)/(cos x(1 + cos x))  dx`


`sqrt((10x^9 + 10^x  log e^10)/(x^10 + 10^x)) dx` equals


`int (dx)/sqrt(9x - 4x^2)` equals


`int (xdx)/((x - 1)(x - 2))` equals


`int (dx)/(x(x^2 + 1))` equals


`int e^x sec x(1 + tanx) dx` equals


`int sqrt(1 + x^2) dx` is equal to


`int sqrt(x^2 - 8x + 7)  dx` is equal to:-


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×