Advertisements
Advertisements
प्रश्न
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
उत्तर
Consider the given function
`I=int(x^2+x+1)/((x^2+1)(x+2))dx`
Let `(x^2+x+1)/((x^2+1)(x+2))=A/(x+2)+(Bx+C)/(x^2+1)`
`= (A(x^2+1)+(Bx+C)(x+2))/((x^2+1)(x+2))`
`=((A+B)x^2+(2B+C)x+(2C+A))/((x^2+1)(x+2))`
Thus equating the coefficients, we have,
A+B=1...(1)
2B+C=1...(2)
2C+A=1...(3)
Solving the above three equations, we have,
`A=3/2,B=2/5 `
`:.(x^2+x+1)/((x^2+1)(x+2))=A/(x+2)+(Bx+C)/(x^2+1)`
`=>(x^2+x+1)/((x^2+1)(x+2))=3/(5(x+2))+(2x+1)/(5(x^2+1)`
`:.I=int(x^2+x+1)/((x^2+1)(x+2))dx`
`=int[3/(5(x+2))+(2x+1)/(5(x^2+1))]dx`
`=3/5intdx/((x+2))dx+1/5int(2x+1)/((x^2+1))dx`
`=3/5log(x+2)+1/5int(2x)/((x^2+1))dx+1/5intdx/((x^2+1))`
`=3/2log(x+2)+1/5log(x^2+1)+1/5tan^(-1)x+C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
What is anti derivative of `e^(2x)`
`d/(dx)x^(logx)` = ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.