मराठी

Integrate the function: tan-11-x1+x - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function:

`tan^(-1) sqrt((1-x)/(1+x))`

बेरीज

उत्तर

Let `I = int tan^-1  sqrt ((1 - x)/(1 + x))   dx`

Let x = cos θ 

⇒ dx = -sinθ dθ

`= I = int tan^-1 sqrt ((1 - cos theta)/(1 + cos theta)) - sin theta d theta`

`= int - tan^-1 (tan  theta/2) (sin theta) d theta`

`= - int theta/2 sin theta d theta`

`= -1/2 [theta int sin theta d theta - int d/(d theta) (theta) int sin theta d theta] d theta`

`= -1/2 [theta (- cos theta) - int 1 (-cos theta) d theta]`

`= 1/2 theta cos theta - 1/2 int cos theta d theta`

`= 1/2theta cos theta - 1/2 sin theta + C`

`= 1/2 theta cos theta - 1/2 sqrt (1 - cos^2 theta) + C`

`= 1/2 [x cos^-1  x sqrt (1 - x^2)] + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.12 | Q 23 | पृष्ठ ३५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the antiderivative of `(3sqrtx+1/sqrtx).`


Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`


 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

Find an anti derivative (or integral) of the following function by the method of inspection.

Cos 3x


Find an anti derivative (or integral) of the following function by the method of inspection.

e2x


Find an anti derivative (or integral) of the following function by the method of inspection.

(axe + b)2


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`int (x^3 + 5x^2   -4)/x^2 dx`


Find the following integrals:

`int (x^3 + 3x + 4)/sqrtx dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


Find the following integrals:

`int(2x - 3cos x + e^x) dx`


Find the following integrals:

`int (2 - 3 sinx)/(cos^2 x) dx.`


The anti derivative of `(sqrtx + 1/ sqrtx)` equals:


Integrate the function:

`1/(x - x^3)`


Integrate the function:

`1/(x^2(x^4 + 1)^(3/4))`


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`sinx/(sin (x - a))`


Integrate the function:

`1/(cos (x+a) cos(x+b))`


Integrate the function:

`e^x/((1+e^x)(2+e^x))`


Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Integrate the function:

`(2+ sin 2x)/(1+ cos 2x) e^x`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:


`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal


`int (dx)/sqrt(9x - 4x^2)` equal


`int (xdx)/((x - 1)(x - 2))` equals


`int sqrt(1 + x^2) dx` is equal to


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.


`int (dx)/sqrt(5x - 6 - x^2)` equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×