Advertisements
Advertisements
प्रश्न
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
उत्तर
We know that,
`d/dx` sin 3x = 3 cos 3x
or cos 3x = `d/dx(1/3 sin 3x)`
Hence, the antiderivative of cos 3x is `1/3` sin 3x.
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Evaluate `int tan^(-1) sqrtx dx`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`d/(dx)x^(logx)` = ______.