Advertisements
Advertisements
प्रश्न
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
उत्तर
Let `1/(xsqrt(ax - x^2))`
Put `x = a/t`
dx = `- a/t^2 dt`
Now, `xsqrt(ax - x^2) = a/tsqrt(a xx a/t - a^2/t^2)`
`= a^2/t sqrt(1/t - 1/t^2) = a^2/t^2 sqrt(t - 1)`
`therefore I = 1/(a^2/t^2 sqrt(t - 1)) xx (- a)/t^2 dt`
`= - 1/a int 1/sqrt(t - 1) dt`
`= - 1/a ((t - 1)^(- 1/2 + 1))/(- 1/2 + 1) + C`
`= - 1/a (t - 1)^(1/2)/(1/2) + C`
`= - 2/a sqrt(t - 1) + C`
`= - 2/a sqrt(a/x - 1) + C`
`= - 2/a sqrt((a - x)/x) + C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (dx)/(x(x^2 + 1))` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.