Advertisements
Advertisements
प्रश्न
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
उत्तर
Let `I = (x^2 + x + 1)/((x + 1)^2 (x + 2)) dx`
Now, `(x^2 + x + 1)/((x + 1)^2 (x + 2))`
`= A/(x + 2) + B/(x + 1) + C/(x + 1)^2`
∴ x2 + x + 1 ≡ A(x + 1)2 + B(x + 2)(x + 1) + C(x + 2)
put x = -2.
⇒ 4 - 2 + 1 = A(- 1)2
and 3 = A
A = 3
Put x = - 1
⇒ 1 - 1 + 1 = C(- 1 + 2)
∴ C = 1
Comparing the coefficient of x2,
1 = A + B
B = 1 - A = 1 - 3
∴ B = - 2
∴ `(x^2 + x + 1)/((x + 1)^2 - (x + 2))`
`= 3/(x + 2) - 2/(x + 1) + 1/(x + 1)^2`
∴ I = `int (x^2 + x + 1)/((x + 1)^2 - (x + 2)) dx`
`= int 3/(x + 2) dx - 2int 1/(x + 1) dx + int 1/(x + 1)^2 dx`
`= 3 log (x + 2) - 2 log (x + 1) - 1/(x + 1) + C`
APPEARS IN
संबंधित प्रश्न
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int tan^(-1) sqrtx dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.