Advertisements
Advertisements
प्रश्न
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
पर्याय
`x^4 + 1/x^3 - 129/8`
`x^3 + 1/x^4 + 129/8`
`x^4 + 1/x^3 + 129/8`
`x^3 + 1/x^4 - 129/8`
उत्तर
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is `underline(x^4 + 1/x^3 - 129/8)`.
Explanation:
`d/dx f(x) = 4x^3 - 3/x^4`
= f (x) `= int (4x^3 - 3/x^4) dx`
`= 4/4 x^4 - 3/(-3).1/x^3 + C`
`= x^4 + 1/x^3` + C
But, f(2) = 0
`(2)^4 + 1/(2)^3 + C = 0`
`= 16 + 1/8 + C = 0`
⇒ C `= - 129/8`
⇒ f(x) = `x^4 + 1/x^3 - 129/8`
APPEARS IN
संबंधित प्रश्न
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Evaluate `int tan^(-1) sqrtx dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/(x(x^2 + 1))` equals
`int sqrt(1 + x^2) dx` is equal to
What is anti derivative of `e^(2x)`
`d/(dx)x^(logx)` = ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.