Advertisements
Advertisements
प्रश्न
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
उत्तर
Let I = `int (5x)/((x + 1)(x^2 + 9))`dx
`therefore (5x)/((x + 1)(x^2 + 9)) = A/(x + 1) + (Bx + C)/(x^2 + 9)`
`=> 5x = A(x^2 + 9) + (Bx + C)(x + 1)`
Putting x = -1 in equation (1),
- 5 = A(1 + 9)
⇒ - 5 = 10 A
`therefore A = - 5/10 = - 1/2`
From equation (1),
Comparing the coefficients of x2 and the constant term,
0 = A + B
⇒ B = - A = `1/2`
0 = 9A + C
⇒ C = - 9A = `9/2`
`therefore (5x)/((x + 1)(x^2 + 9)) = (- 1)/(2(x + 1)) + (1/2 x + 9/2)/(x^2 + 9)`
∴ `I = int(1/2)/(x + 1) dx + int (1/2 x + 9/2)/(x^2 + 9) dx`
`= -1/2 log (x + 1) + 1/4 int (2x)/(x^2 + 9) dx + 9/2 int dx/ (x^2 + 3^2) + C`
`= -1/2 log (x + 1) + 1/4 log (x^2 + 9) + 9/2 xx 1/3 tan^-1 x/3 + C`
`= -1/2 log (x + 1) + 1/4 log (x^2 + 9) + 3/2 tan^-1 x/3 + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Evaluate `int tan^(-1) sqrtx dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (dx)/(sin^2x cos^2x) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.