मराठी

Integrate the function: 5x(x+1)(x2+9) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function:

`(5x)/((x+1)(x^2 +9))`

बेरीज

उत्तर

Let I = `int (5x)/((x + 1)(x^2 + 9))`dx

`therefore (5x)/((x + 1)(x^2 + 9)) = A/(x + 1) + (Bx + C)/(x^2 + 9)`

`=> 5x = A(x^2 + 9) + (Bx + C)(x + 1)`

Putting x = -1 in equation (1),

- 5 = A(1 + 9)

⇒ - 5 = 10 A

`therefore A = - 5/10 = - 1/2`

From equation (1),

Comparing the coefficients of x2 and the constant term,

0 = A + B

⇒ B = - A = `1/2`

0 = 9A + C

⇒ C = - 9A = `9/2`

`therefore (5x)/((x + 1)(x^2 + 9)) = (- 1)/(2(x + 1)) + (1/2 x + 9/2)/(x^2 + 9)`

∴ `I = int(1/2)/(x + 1) dx + int (1/2 x + 9/2)/(x^2 + 9)  dx`

`= -1/2 log (x + 1) + 1/4 int (2x)/(x^2 + 9) dx + 9/2 int dx/ (x^2 + 3^2) + C`

`= -1/2 log (x + 1) + 1/4 log (x^2 + 9) + 9/2 xx 1/3 tan^-1  x/3 + C`

`= -1/2 log (x + 1) + 1/4 log (x^2 + 9) + 3/2 tan^-1  x/3 + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.12 [पृष्ठ ३५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.12 | Q 6 | पृष्ठ ३५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`


If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).


Find an anti derivative (or integral) of the following function by the method of inspection.

sin 2x


Find an anti derivative (or integral) of the following function by the method of inspection.

e2x


Find an anti derivative (or integral) of the following function by the method of inspection.

(axe + b)2


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`int (4e^(3x) + 1)`


Find the following integrals:

`int(2x^2 + e^x)dx`


Find the following integrals:

`int(sqrtx - 1/sqrtx)^2 dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


Find the following integrals:

`int(2x - 3cos x + e^x) dx`


Find the following integrals:

`int(2x^2 - 3sinx + 5sqrtx) dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


Find the following integrals:

`int(sec^2x)/(cosec^2x) dx`


If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`sinx/(sin (x - a))`


Integrate the function:

`cos x/sqrt(4 - sin^2 x)`


Integrate the function:

`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`


Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`


Evaluate `int tan^(-1) sqrtx dx`


The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`int (dx)/(sin^2x cos^2x) dx` equals


`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to


`int (dx)/sqrt(9x - 4x^2)` equals


`int (xdx)/((x - 1)(x - 2))` equals


`int (dx)/(x(x^2 + 1))` equals


`f x^2 e^(x^3) dx` equals


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.


`int (dx)/sqrt(5x - 6 - x^2)` equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×