Advertisements
Advertisements
प्रश्न
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
उत्तर
Let I = `int 1/(x^(1/2) + x^(1/3))`dx
Put `x^(1/6) = t, x = t^6 `
dx = 6 t5 dt
`int = (6 t^5 dt)/(t^3 + t^2) = 6 int (t^3/(t + 1))`dt
`= 6 int (t^3 + 1 - 1)/(t + 1)`dt
`= 6 int ((t^3 + 1)/(t + 1) - 1/(t + 1)) dt`
`= int (((t + 1)(t^2 - t - 1))/(t + 1) - 1/(t + 1)) dt`
`= 6 int (t^2 - t + 1 - 1/(t + 1)) dt`
`= 6 int t^2 dt - 6 int t dt - 6 int 1/(t + 1) dt`
`= (6t^3)/3 - (6t^2)/2 - 6 log |t + 1| + C`
= 2t3 - 3t2 - 6 log |t + 1| + C
= `2sqrtx - 3x^(1/3) + 6x^(1/6) - 6 log |x^(1/6) + 1| + C`
APPEARS IN
संबंधित प्रश्न
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
e2x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
What is anti derivative of `e^(2x)`
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.