Advertisements
Advertisements
प्रश्न
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
उत्तर
Let `I = int (2x^2 - 3 sin x + 5 sqrt5)` dx
`I = 2 int x^2 dx - 3 int sin x dx + 5 int x^(1/2)` dx
`I = 2/3 x^3 + 3 cos x + 10/3 x^(3/2) + C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate `int tan^(-1) sqrtx dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.