Advertisements
Advertisements
Question
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Solution
Let `I = int 1/ (sqrt(sin^3 x sin (x + alpha))) dx`
`= int sqrt ((sinx)/(sin^4 x sin (x + alpha))) dx`
`= int 1/ (sin^2 x) sqrt((sinx)/ (sin (x + alpha))) dx`
Let `(sin (x + alpha))/ sinx = t`
⇒ `(sin x cos (x + alpha) - cos x sin (x + alpha))/sin^2 x dx = dt`
⇒ `(sin [x - (x + alpha)])/sin^2 x dx = dt`
⇒ `-(sin alpha)/sin^2 x dx = dt`
∴ `I = int - 1/ (sin alpha)* 1/sqrtt dt`
`= -1/ (sin alpha) int t^(-1/2) dt`
`= -1/ (sin alpha) t^(1/2)/(1/2) + C`
`= (-2)/ (sin alpha) sqrtt + C`
`= (-2)/(sin alpha) sqrt (sin(x + alpha)/sinx) + C`
APPEARS IN
RELATED QUESTIONS
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
sin 2x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (dx)/(sin^2x cos^2x) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
What is anti derivative of `e^(2x)`
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.