Advertisements
Advertisements
Question
Find the following integrals:
`int(1 - x) sqrtx dx`
Solution
`int (1 - x) sqrtx dx`
`I = int (x^(1/2) - x^(3/2))` dx
`I= int x^(1/2) dx - int x^(3/2)` dx
`I= 2/3 x^(3/2) - 2/5 x^(5/2) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int(2x^2 + e^x)dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (e^x (1 + x))/(cos^2 (xe^x)) dx` equal
`int (dx)/sqrt(9x - 4x^2)` equal
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.