English

Evaluate the following : ∫sec3x.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following:

`int sec^3x.dx`

Sum

Solution

Let I = `int sec^3x.dx`

= `int sec x sec^2x.dx`

= `sec x int sec^2x.dx - int[d/dx(secx) int sec^2x.dx].dx`

= `secx tanx- int (secx tanx)(tanx).dx`

= `secx tanx - int secx tan^2x.dx`

= `secx tanx - int secx (sec^2x - 1).dx`

= `secx tanx - int sec^3x.dx + int secx.dx`

∴ I = sec x tan x – I + log |sec x + tanx|

∴ 2I = sec x tan x + log |sec x  + tan x|

∴ I = `(1)/(2)[secx tanx + log |secx + tan|] + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 137]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in xlog x.


Integrate the function in x (log x)2.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in e2x sin x.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int cos sqrt(x).dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(5 - 16"x"^2)`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


∫ log x · (log x + 2) dx = ?


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate `int tan^-1x  dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3 e^(x^2) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


The value of `inta^x.e^x dx` equals


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×