Advertisements
Advertisements
Question
`int ("d"x)/(x - x^2)` = ______
Options
log x – log(1 – x) + c
log(1 – x2) + c
– log x + log(1 – x) + c
log(x – x2) + c
Solution
`int ("d"x)/(x - x^2)` = log x – log(1 – x) + c
APPEARS IN
RELATED QUESTIONS
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in ex (sinx + cosx).
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
∫ x log x dx
Evaluate: ∫ (log x)2 dx
`int(x + 1/x)^3 dx` = ______.
Evaluate `int 1/(x(x - 1)) "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int(1-x)^-2 dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`