Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Solution
Let I = `int e^(2x).sin3x`
I = ` int sin 3x . e^(2x) dx`
I = `sin3x . int e^(2x) dx - int[d/dx (sin3x) int e^(2x)dx]dx`
I = `sin3x . e^(2x)/2 - int 3cos3x . e^(2x)/2 dx`
I = `1/2 sin3x.e^(2x) - 3/2 int cos3x . e^(2x)dx`
I = `1/2sin3x.e^(2x) - 3/2 intcos3x inte^(2x)dx - int [d/dx cos3x . int e^(2x)dx]dx`
I = `1/2 sin3x . e^(2x) - 3/2 cos3x . e^(2x)/2 + 3/2 int -sin3x . x3 . e^(2x)/2 dx`
I = `1/2 sin3x . e^(2x) - 3/4 cos3x . e^(2x) - 9/4 [int sin3x . e^(2x) dx]`
I = `1/2 sin3x . e^(2x) - 3/4 . cos3x . e^(2x) - 9/4 "I" + "c"_1`
`"I" + 9/4"I" = 1/2 sin3x . e^(2x) - 3/4 cos3x . e^(2x) + "c"_1`
`13/4 "I" = 1/2 e^(2x) [sin3x - 3/2 cos3x] + "c"_1`
I = `4/13 xx 1/2 e^(2x) [sin3x . 3/2 cos3x] + 4/13 "c"_1 ...[at 4/13 "c"_1 = "c"]`
I = `1/13 e^(2x) [2 sin3x - 3 cos3x] + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in x sin 3x.
Integrate the function in x tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in (x2 + 1) log x.
Integrate the function in e2x sin x.
`intx^2 e^(x^3) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : e2x sin x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int logx/(1 + logx)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int 1/sqrt(x^2 - 9) dx` = ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`inte^(xloga).e^x dx` is ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`inte^x sinx dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate:
`int x^2 cos x dx`
The value of `inta^x.e^x dx` equals