Advertisements
Advertisements
Question
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Options
`(1 - x^2)^(-1/2) + c`
`(1 - x^2)^(1/2) + c`
`tan^m x/sqrt(1 - x^2) + c`
`- sqrt(1 - x^2) + c`
Solution
`-sqrt(1 - x^2) + c`
`["Hint" : sin^-1x = tan^-1 (x/sqrt(1 - x^2))].`
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin x.
Integrate the function in x2 log x.
Integrate the function in x sec2 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int logx/x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/x "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int e^x.sin2xdx`
`int(logx)^2dx` equals ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
`int1/(x+sqrt(x)) dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int logx dx = x(1+logx)+c`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
The value of `inta^x.e^x dx` equals
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`