Advertisements
Advertisements
Question
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Solution
Let I = `int "x"^2 "e"^"4x"`dx
`= "x"^2 int "e"^"4x" "dx" - int["d"/"dx" ("x"^2) int "e"^"4x" "dx"]` dx
`= "x"^2 * "e"^"4x"/4 - int 2"x" * "e"^"4x"/4` dx
`= ("x"^2 * "e"^"4x")/4 - 1/2 int "x" * "e"^"4x"` dx
`= ("x"^2 * "e"^"4x")/4 - 1/2 ["x" int "e"^"4x" "dx" - int ("d"/"dx" ("x") int "e"^"4x" "dx") "dx"]`
`= ("x"^2 * "e"^"4x")/4 - 1/2 ["x" * "e"^"4x"/4 - int 1 * "e"^"4x"/4 "dx"]`
`= ("x"^2 "e"^"4x")/4 - 1/2[("x" * "e"^"4x")/4 - 1/4 int "e"^"4x" "dx"]`
`= ("x"^2 "e"^"4x")/4 - 1/2[("x" * "e"^"4x")/4 - 1/4 * "e"^"4x"/4]` + c
`= ("x"^2 "e"^"4x")/4 - ("x" "e"^"4x")/8 + "e"^"4x"/32` + c
∴ I = `("e"^"4x")/4 ["x"^2 - "x"/2 + 1/8]` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int logx dx = x(1+logx)+c`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`