Advertisements
Advertisements
प्रश्न
Integrate the function in ex (sinx + cosx).
उत्तर
Let `I = int e^x (sin x + cos x) dx`
Put ex sin x = t
`=> (e^x cos x + e^x sin x) dx = dt`
`therefore e^x (sin x + cos x) dx = dt`
`therefore I = int dt = t + C`
`= e^x sin x + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Integrate the function in x cos-1 x.
Integrate the function in `e^x (1/x - 1/x^2)`.
`intx^2 e^(x^3) dx` equals:
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2*cos^-1 x*dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(4x^2 - 1) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int(logx)^2dx` equals ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int1/(x+sqrt(x)) dx` = ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int logx dx = x(1+logx)+c`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`