हिंदी

Choose the correct options from the given alternatives : ∫cos-37x⋅sin-117x⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =

विकल्प

  • `log (sin^(-4/7) x) + c`

  • `(4)/(7)tan^(4/7) x + c`

  • `-(7)/(4)tan^(-4/7) x + c`

  • `log (cos^(3/7) x) + c`

MCQ

उत्तर

`-(7)/(4)tan^(-4/7) x + c`

[ Hint : `int cos^(-3/7)x sin^(-11/7)x*dx`

= `int (sin^(-11/7)x)/(cos^(-11/7)x*cos^2x)*dx`

= `int tan^(-11/7)x sec^2x*dx`
Put tan x = t].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १४९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.14 | पृष्ठ १४९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


Integrate the function in x log x.


Integrate the function in (sin-1x)2.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in x (log x)2.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Find : 

`∫(log x)^2 dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : log (x2 + 1)


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int(x + 1/x)^3 dx` = ______.


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(4x^2 - 1)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int cot "x".log [log (sin "x")] "dx"` = ____________.


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


`int 1/sqrt(x^2 - 9) dx` = ______.


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Solution of the equation `xdy/dx=y log y` is ______


`int logx  dx = x(1+logx)+c`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate `int tan^-1x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×