हिंदी

∫1x2-9dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int 1/sqrt(x^2 - 9) dx` = ______.

विकल्प

  • `1/3 log |x + sqrt(x^2 - 9)| + c`

  • `log |x + sqrt(x^2 - 9)| + c`

  • `3log |x + sqrt(x^2 - 9)| + c`

  • `log |x - sqrt(x^2 - 9)| + c`

MCQ
रिक्त स्थान भरें

उत्तर

`int 1/sqrt(x^2 - 9) dx` = `bb(log |x + sqrt(x^2 - 9)| + c)`.

Explanation:

`int 1/sqrt(x^2 - 9) dx =  int 1/sqrt(x^2 - 3^2) dx`

= `log |x + sqrt(x^2 - 3^2)| + c`

= `log |x + sqrt(x^2 - 9)| + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्न

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in x sin 3x.


Integrate the function in `x^2e^x`.


Integrate the function in x log x.


Integrate the function in xlog x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int 1/sqrt(x^2 - a^2)dx` = ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×