Advertisements
Advertisements
प्रश्न
`int 1/sqrt(x^2 - 9) dx` = ______.
विकल्प
`1/3 log |x + sqrt(x^2 - 9)| + c`
`log |x + sqrt(x^2 - 9)| + c`
`3log |x + sqrt(x^2 - 9)| + c`
`log |x - sqrt(x^2 - 9)| + c`
उत्तर
`int 1/sqrt(x^2 - 9) dx` = `bb(log |x + sqrt(x^2 - 9)| + c)`.
Explanation:
`int 1/sqrt(x^2 - 9) dx = int 1/sqrt(x^2 - 3^2) dx`
= `log |x + sqrt(x^2 - 3^2)| + c`
= `log |x + sqrt(x^2 - 9)| + c`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x sin 3x.
Integrate the function in `x^2e^x`.
Integrate the function in x log x.
Integrate the function in x2 log x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
`int 1/sqrt(x^2 - a^2)dx` = ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`int x^3 e^(x^2) dx`