Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x : e2x sin x cos x
उत्तर
Let I = `int e^(2x)*sin x cos x*dx`
= `(1)/(2) int e(2x)*2sin x cos x dx`
= `(1)/(2) int e^(2x)*sin2x *dx` ...(1)
= `(1)/(2)[e^(2x) int sin 2x*dx - int {d/dx (e^(2x)) int sin 2x*dx}*dx]`
= `(1)/(2)[e(2x) ((-cos2x)/2) - int e^(2x) xx 2 xx ((- cos2x)/2)*dx]`
= `-(1)/(4) e^(2x) cos 2x + 1/2 int e^(2x) cos 2x*dx`
= `-(1)/(4)e^(2x) cos2x + (1)/(2)[e^(2x) int cos 2x*dx - int {d/dx (e^(2x)) int cos 2x*dx }*dx]`
= `(1)/(4)e^(2x) cos 2x + 1/2 [e^(2x).(sin2x)/(2) - int e^(2x) xx 2 xx (sin2x)/(2)*dx]`
= `-(1)/(4) e^(2x) cos 2x + (1)/(4) e^(2x) sin 2x - (1)/(2) int e^(2x) sin2x*dx`
∴ I = `-(1)/(4) e^(2x) cos 2x + (1)/(4) e^(2x) sin 2x - "I"` ..[By (1)]
∴ 2I = `-(1)/(4)e^(2x) cos 2x + 1/4e^(2x) sin2x`
∴ I = `e^(2x)/(8)(sin2x - cos2x) + c`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate : sec3 x w. r. t. x.
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in x sin-1 x.
Integrate the function in x sec2 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `e^x (1/x - 1/x^2)`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int logx/x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int ("d"x)/(x - x^2)` = ______
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int e^x.sin2xdx`
Solve: `int sqrt(4x^2 + 5)dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`inte^x sinx dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int x^2 cos x dx`