Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
उत्तर
Let I = `int x^2/((x - 1)(3x - 1)(3x - 2)).dx`
Let `x^2/((x - 1)(3x - 1)(3x - 2)) = "A"/(x - 1) + "B"/(3x -1) + "C"/(3x - 2)`
∴ x2 = A(3x -1)(3x - 2) + B(x – 1)(3x - 2) + C(x – 1)(3x -1)
Put x – 1 = 0, i.e. x = 1, we get
∴ x2 = A(2)(1) + B(0)(1) + C(0)(2)
∴ 2 = 4A
∴ A = `(1)/(2)`
Put x + 2 = 0, i.e. x = – 2, we get
2 + 2 = A(0)(1) + B(– 3)(1) + C(– 3)(0)
∴ 6 = – 3B
∴ B = – 2
Put x + 3 = 0, i.e. x = – 3we get
9 + 2 = A(– 1)(0) + B(– 4)(0) + C(– 4)(– 1)
∴ 11 = 4C
∴ C = `(11)/(4)`
∴ `(x^2 + 2)/((3x - 1)(x - 1)(3x - 2))`
= `((1/4))/(3x - 1) + (-2)/(x - 1) + ((11/4))/(3x - 2)`
∴ I = `int [((1/4))/(3x - 1) + (-2)/(x - 1) + ((11/4))/(3x - 2)].dx`
= `(1)/(18) int (1)/(3x - 1).dx - 2 int(1)/(x - 1).dx + (4)/(9) int (1)/(3x - 2).dx`
= `(1)/(18) log|3x - 1| + (1)/(2) log|x - 1| - (4)/(9) log|3x - 2| + c`.
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
`int (xdx)/((x - 1)(x - 2))` equals:
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int sec^3x "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ("d"x)/(x^3 - 1)`
`int xcos^3x "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
`int 1/(x^2 + 1)^2 dx` = ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`